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Abstract — This paper is about derivatives technique and
their composition for semi-numerical models. Techmjues such
as symbolic derivation and automatic differentiation are
addressed. All techniques are illustrated for the @dient based
optimization of a magnetic nano switch.

. INTRODUCTION

Sizing by optimization is nowadays of major intéres
the design process of electromagnetic device. ©at ig to
use optimization algorithms in conjunction with $em
analytical model in order to solve the sizing pevbl
Among the deterministic algorithms, the constrained
gradient based optimization using Sequential Quidra
Programming (SQP) algorithms is very efficient. Suc
algorithms require accurate values of the objediivetion
and constraint derivatives. Unfortunately, it iteof difficult
to obtain the symbolic expression of the derivatioé the
sizing model. But several techniques as Automatic
Differentiation (AD) can be used to compute these
derivatives.

The paper highlights a generic framework of model
composition using different derivation techniquéshis
approach is shown through the example of a magnatio
switch optimization.

Il. DERIVATION TECHNIQUES

The finite difference approximation leads to an
approximation suffering from both truncation and
cancellation errors. It is very easy to set-up, ibus very
difficult to settle the adjustment parameter.

The derivatives can be computed symbolically. This
method is reliable and the faster that can be fpootonly
with symbolic expression but also with functionsuiting
from numerical integration or from implicit solvéthanks
to implicit theorem). The main drawback of this hat is
the impossibility to differentiate the computingdeo(with
conditional instructions, loops, etc.).

Automatic differentiation (AD) exploits the natural
process of source code compilation and makes usbeof
intermediate representation of implemented funsticom
different programming languages. The derivativesath
elementary operation can be obtained in a straighérd
way and can be combined according to the chain afile
differential calculus in order to obtain the detiva of the
initial  function. Thus, depending on the chosen
accumulation strategy, functions of arbitrary coaxily can
be differentiated in two ways, namely forward apderse.

In the forward mode one propagates derivatives of

intermediate variables with respect to the indepahd
variables, while in reverse, derivatives of thection with
respect to intermediate variables — also callediatdj — are
propagated.

Typically, AD can be implemented using either the
operator overloading (ADOL-C [4], CppAD, etc) oreth
source transformation technique (ADIFOR, ADiJaC, [6]
etc). In operator overloading one overloads theratpes
which are applied on new variable types, with thatine
call performing the actual derivative computatiofhe
source transformation approach examines the saode
of the original function and generates new codet tha
computes the desired derivatives in the same tirae the
original function.

. SENSITIVITY PROPAGATION OFCOMPOUNDMODEL

As studied in [2] , and as shown in Fig. 1 and Bigwo
kinds of sensitivity propagation mechanism can be
considered to build global sensitivities.
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Fig. 1. A compound model based on partial derieatikxopagation
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Fig. 2. A compound model based on differential pigation

Each method owns its advantages and drawbacks. The
choice of partial derivative propagation has beadenwith
interface standard in CADES framework (developed in
Grenoble laboratory) to ensure interoperability weetn
models from different derivation techniques.

IV. DERIVATIVES OF MAGNETIC NANO SWITCH MODEL

The semi-numerical model of magnetic nano switch wa
presented in [3]. It involves a coupled magnetoimaedal
deformation of a cantilever beam, and allows etaigahe
contact length and the contact force. The followeayt
details how the derivatives of each model blocke ar
computed.
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A. Magnetic model

For specific configuration of MEMS/NEMS, the
Coulombian approach is used for the modeling of mag
leading to a full analytical magnetic field modebrces and
magnetic torques applied on the beam (in magnetits)
are computed by adaptive numerical integrationse Th
derivatives of this magnetic model can be computed
symbolically with accuracy and rapidity [5].

B. Mechanical deformation model

The model used to compute deformation in the psen
of contact of a cantilever beam has inputs and uisitps
shown in Fig. 3
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Fig. 3. Inputs and outputs of mechanical defornmatimdel

ADiJaC [6] was used in order to manage the deowati
of this complex algorithm. ADiJaC is a source
transformation AD tool that implements both thewfard
and reverse modes on Java codes. To date it idirghe
useable AD tool for the Java programming language.
Differentiating the NEMS model with ADiJaC was
improved to deal with special cases of matrix opens,
nested method calls, special functions (e.g. “lefgtand
special array initializations - all intra-procedura
transformations. During this work, ADiJaC’s inter-
procedural analysis was also enhanced, so asdw d#fle
tool to differentiate functions returning arrayedaeceiving
any number of vector and scalar parameters.

C. Magneto-Mechanic coupling

Magnetic
Forces, Torqu Positions

Mechanic
Fig. 4. Sequential magnetic-mechanical coupling
The sequential magneto-mechanical coupling destribe
in Fig. 4. has been solved by an implicit solvethwbauss

method. Its derivatives are computed symbolicddgnks to
a classical implicit theorem.

D. Composition in the CADES framework
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Fig. 5. Sensitivity propagation of magnetic nandétchvin CADES

All these models are given with their own Jacobian
using different techniques (symbolic or AD). CADES
framework defines a standard to make the compaositio
possible. Each model implementing this standard fan
integrated into the framework. Then the overaltresated
automatically by another AD tool (ADOL-C) to builtie
global model (Fig. 5).

V. OPTIMIZATION RESULTS

Working principle of magnetic nano switch was
presented in [3]. Geometry and parameters to bienzed
are given in Fig. 6. The optimization aims to deiee
dimensions of both fixed and mobile magnets andr the
positions on the beam. The objective is to minimize
volume of magnets, while respecting constraintshsas
length of contact and contact force, in order tsuea the
quality of contact or the contact resistances alowb a
desired value.

Fig. 6. Geometry and parameters to be optimized
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A genetic algorithm (without gradients) and the SQP
algorithm (using gradients) were used. Both gaeestime
results but the first algorithm needed 3 hours agtatpon
time while the second only 92 seconds.

VI. CONCLUSIONS

Deterministic  optimization using gradient based
algorithms is very efficient for sizing problems thvi
constraints. However, such algorithms meet a maj of
usage because of the difficulty to obtain exactlgl eapidly
the derivatives values. This paper highlights the
composition of different derivation techniques in a
compound model through the example of magnetic nano
switch.

The full paper will detail the propagation mechamisf
derivatives. Each derivation techniques will beaded,
highlighting advantages and drawbacks. More details
be given on the optimization procedure and results.
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